

OBSERVED HEAT WAVE STATISTICS

EDF/R&D

January 2016

DATA

- 9 ECA&D daily maximum temperature (TX)
 - □ from1951 2015 (30/11)
 - Homogeneous
 - Publicly available

location	Period
Besançon	1951-2015
Cap de la Hève	1951-2015
Carcassonne	1951-2015
lle de Groix	1951-2015
La Rochelle	1951-2015
Orléans	1951-2015
Pointe de la Hague	1962-2015
Strasbourg	1951-2015
Vichy	1951-2015

Stochastic model

• Simulation de Z(t)

$$Z(t) = \frac{X(t) - S_m(t) - m(t)}{S_v(t)s(t)}$$

Heat wave analysis

- 500 simulations of Z(t) based on observations
- Heat wave:
 - At least 2 days with TX>threshold
 - Mean yearly duration (nb days), intensity (sum(TX)), number
 - ≠ thresholds: q95%, q80%, q75% summer TX
- Validation: ex Orleans q95%

Evolution

- Observation period divided into n successive 10-year sub-periods
- Changes for each sub-period / first one
- Significance / 90% confidence interval from the 500 simulations
- Duration, intensity, number
- Different thresholds

Results: duration q95

Results: intensity q95

Results: number q95

Results: duration q75

Results: intensity q75

cum. degC

Results: number q75

Peaks: highest values

- Selection of warm events: consecutive days above q60% summer
- Selection of the highest TX during these events
- New selection of events: peaks > q95% previously selected peaks
- Respective values for X, m, s and Z

Decomposition: role for the peaks

Example

Discussion

- Observed heat waves evolution
 - Significant changes in mean annual number essentially
 - Stronger changes with lower thresholds, but still not significant
- Role of mean, variance and residuals for hot extremes
 - High levels = high values of Z

- Highest ones: combination of high Z and high m and s

THANKS

edF

Example for cold extremes

